日韩成人黄色,透逼一级毛片,狠狠躁天天躁中文字幕,久久久久久亚洲精品不卡,在线看国产美女毛片2019,黄片www.www,一级黄色毛a视频直播

一種水射流裝備在線故障預(yù)警方法與流程

文檔序號(hào):11250194閱讀:424來源:國(guó)知局
一種水射流裝備在線故障預(yù)警方法與流程
本發(fā)明涉及一種水射流裝備在線故障預(yù)警方法,屬于工業(yè)自動(dòng)化領(lǐng)域。
背景技術(shù)
:水射流裝備作為當(dāng)前世界唯一一種冷態(tài)高能束加工方式,是近年來迅速發(fā)展起來的新型切割技術(shù),具有加工速度快、加工柔性強(qiáng)、被加工材料無熱損傷、安全、環(huán)保、材料利用率高、可輕易實(shí)現(xiàn)對(duì)傳統(tǒng)意義上的難加工材料進(jìn)行加工、可整體去除材料從而大幅提升構(gòu)件成型效率等優(yōu)勢(shì),因此,水射流裝備加工已成為一種得到廣泛應(yīng)用的新型綠色無損高能束加工技術(shù)。隨著科學(xué)技術(shù)的快速發(fā)展,制造業(yè)從以機(jī)器為特征向智能化、信息化、系統(tǒng)化邁進(jìn),水射流設(shè)備的故障預(yù)警功能越來越引起各大廠商的重視,因此,快速準(zhǔn)確的獲取水射流設(shè)備的故障信息是當(dāng)前亟待解決的問題。由于水射流裝備的復(fù)雜性,想獲得整個(gè)水射流裝備故障機(jī)理的數(shù)學(xué)模型是很困難的,傳統(tǒng)的水射流裝備故障信息主要通過人工專用儀器讀數(shù)獲取,人工讀數(shù)獲取的故障信息具有嚴(yán)重滯后性,無法提前預(yù)警。為了提高水射流裝備故障預(yù)警的實(shí)時(shí)性與高效性,目前也有使用bp神經(jīng)網(wǎng)絡(luò)分析,bp神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的自學(xué)習(xí)和聯(lián)想功能、非線性擬合能力,可映射任意復(fù)雜的非線性關(guān)系,具有一定預(yù)警功能,但bp神經(jīng)網(wǎng)絡(luò)不能處理和描述模糊信息,不能很好利用水射流設(shè)備己有經(jīng)驗(yàn)知識(shí),無法對(duì)水射流裝備歷史數(shù)據(jù)與在線數(shù)據(jù)進(jìn)一步挖掘,水射流裝備故障信息無法全部統(tǒng)計(jì),有時(shí)造成預(yù)警誤判的后果。技術(shù)實(shí)現(xiàn)要素:針對(duì)現(xiàn)有技術(shù)存在的缺陷,本發(fā)明的目的是提供一種水射流裝備在線故障預(yù)警方法,將神經(jīng)模糊算法與逐次靜態(tài)數(shù)據(jù)比較算法相結(jié)合,通過神經(jīng)模糊算法基于歷史數(shù)據(jù)對(duì)神經(jīng)模糊模型訓(xùn)練,訓(xùn)練后的神經(jīng)模糊模型可依據(jù)當(dāng)前數(shù)據(jù)得到下一時(shí)刻數(shù)據(jù)預(yù)測(cè),提前診斷故障點(diǎn),再通過逐次靜態(tài)數(shù)據(jù)比較算法基于在線數(shù)據(jù)與歷史正常數(shù)據(jù)進(jìn)行比對(duì),判斷故障信息。本方法充分挖掘歷史數(shù)據(jù)與在線數(shù)據(jù),無需建立系統(tǒng)的精確數(shù)學(xué)模型,具有很強(qiáng)的自學(xué)能力,很好的實(shí)現(xiàn)了水射流裝備在線預(yù)警。為達(dá)上述目的,本發(fā)明的技術(shù)方案如下:一種水射流裝備在線故障預(yù)警方法,基于神經(jīng)模糊算法與逐次靜態(tài)數(shù)據(jù)比較算法相結(jié)合,具體步驟如下:(1)確定神經(jīng)模糊模型輸入與預(yù)測(cè)輸出;(2)確定神經(jīng)模糊系統(tǒng)拓?fù)浣Y(jié)構(gòu);(3)通過聚類求取模糊規(guī)則數(shù)及前件參數(shù);(4)通過最小二乘算法求取后件參數(shù);(5)基于當(dāng)前數(shù)據(jù)得到下一時(shí)刻數(shù)據(jù)預(yù)測(cè),提前診斷故障點(diǎn)。所述步驟(1)的神經(jīng)模糊模型輸入與預(yù)測(cè)輸出,具體為:以輸出數(shù)據(jù)的前t-4時(shí)刻的數(shù)據(jù)作為一個(gè)向量進(jìn)行輸入,即xt=[x(t),x(t-1),x(t-2),x(t-3),x(t-4)]t,以輸出數(shù)據(jù)的t+1時(shí)刻為預(yù)測(cè)輸出,即yt=x(t+1)。所述步驟(2)的神經(jīng)模糊系統(tǒng)拓?fù)浣Y(jié)構(gòu)包括五層,具體為:輸入層、模糊化層、模糊條件層、模糊決策層、輸出層;第一層:輸入層,以輸出數(shù)據(jù)的前t-4時(shí)刻的數(shù)據(jù)作為一個(gè)向量進(jìn)行輸入,該層的各節(jié)點(diǎn)與輸入向量各分量xi連接,該層節(jié)點(diǎn)將輸入信號(hào)xt=[x(t),x(t-1),x(t-2),x(t-3),x(t-4)]t傳遞給下一層,該層節(jié)點(diǎn)數(shù)n1=5;第二層:模糊化層,計(jì)算各輸入分量屬于各語言變量值模糊集合的隸屬函數(shù)隸屬函數(shù)采用高斯函數(shù)表示的鈴型函數(shù),表示為:式中i=1,2…,n;j=1,2…,mi,n是輸入變量數(shù),且n=5;mi是xi模型分割數(shù)cij和σij分別表示隸屬度函數(shù)的中心與寬度,該層總節(jié)點(diǎn)數(shù)第三層:模糊條件層,該層每個(gè)節(jié)點(diǎn)代表一條模糊規(guī)則,第l個(gè)神經(jīng)元與第二層中第l組中的所有神經(jīng)元相連接,它的作用是用來匹配模糊規(guī)則的前件,計(jì)算出每條規(guī)則的適用度,采用的模糊算子為連乘算子,表示為:式中j=1,2,…m,第四層:模糊決策層,實(shí)現(xiàn)歸一化計(jì)算,該層有兩個(gè)神經(jīng)元組成,其中一個(gè)神經(jīng)元與第三層中的所有的神經(jīng)元通過單位權(quán)值連接,而另一個(gè)神經(jīng)元?jiǎng)t通過權(quán)值h與第三層中所有的神經(jīng)元連接,每個(gè)神經(jīng)元分別表示為:神經(jīng)元1:神經(jīng)元2:第五層:輸出層,該層由一個(gè)神經(jīng)元構(gòu)成,該神經(jīng)元與第四層的兩個(gè)神經(jīng)元通過單位權(quán)值連接,用于實(shí)現(xiàn)清晰化計(jì)算,該神經(jīng)元表示:式中,中心cij,寬度σj為前件參數(shù),hl為后件參數(shù)。所述步驟(3)的通過聚類求取模糊規(guī)則數(shù)及前件參數(shù),具體為:1)給定相似性參數(shù)s0,令s0=0.95,將訓(xùn)練數(shù)據(jù)對(duì)x(1)=[xt(1),xt-1(1),xt-2(1),xt-3(1),xt-4(1)]t作為第一個(gè)聚類,并設(shè)聚類中心c1=x(1),此時(shí)聚類個(gè)數(shù)n=1,屬于第一個(gè)聚類的數(shù)據(jù)對(duì)數(shù)目n1=1;2)對(duì)于第k組訓(xùn)練數(shù)據(jù)x(k),按照相似性判據(jù)計(jì)算第k組訓(xùn)練數(shù)據(jù)與每一個(gè)聚類中心cl,(1,2…,n)的相似性,并找到具有最大相似性的聚類l,即找到x(k)屬于的聚類;定義相似性判據(jù)如下:3)根據(jù)下述準(zhǔn)則來決定是否要增加一個(gè)新類:如果sl<s0,表明第k組訓(xùn)練數(shù)據(jù)不屬于已有的聚類,則要建立一個(gè)新聚類,令cn+1=x(k),并令n=n+1,nn=1,其中nn表示屬于第n個(gè)聚類的訓(xùn)練數(shù)據(jù)對(duì)數(shù)目;如果sl≥s0,表明第k組訓(xùn)練數(shù)據(jù)屬于第l個(gè)聚類,則按下式調(diào)節(jié)第l個(gè)聚類的參數(shù):cl=cl+μ(x(k)-cl)nl=nl+1其中μ表示學(xué)習(xí)率,nl表示屬于聚類l的數(shù)據(jù)對(duì)數(shù)目;4)令k=k+1,重復(fù)執(zhí)行步驟2)至4)直到所有的訓(xùn)練數(shù)據(jù)對(duì)都被分配到相應(yīng)的聚類中為止,從而得到聚類個(gè)數(shù)為n,隸屬度函數(shù)的寬度計(jì)算如下:其中ρ是交迭參數(shù),通常取1≤ρ≤2。所述步驟(4)的通過最小二乘算法求取后件參數(shù),具體為:后件參數(shù)的參數(shù)辨識(shí),求解h(h1,h2,…h(huán)n)的具體求取規(guī)則如下:令則h的最小二乘估計(jì)為:所述步驟(5)的具體步驟如下:將測(cè)試數(shù)據(jù)按向量形式[x(t)′,x(t-1)′,x(t-2)′,x(t-3)′,x(t-4)′]依次輸入神經(jīng)模糊系統(tǒng)中,得出神經(jīng)模糊模型的預(yù)測(cè)輸出值x(t+1)′,計(jì)算測(cè)試數(shù)據(jù)實(shí)際輸出與預(yù)測(cè)輸出的絕對(duì)誤差δe=|x(t+1)-x(t+1)′|,求取正常工作時(shí)的歷史數(shù)據(jù)前l(fā)個(gè)數(shù)據(jù)的平均值逐次計(jì)算測(cè)試數(shù)據(jù)實(shí)際輸出與靜態(tài)正常訓(xùn)練數(shù)據(jù)的絕對(duì)誤差與現(xiàn)有技術(shù)相比,本發(fā)明的有益效果是:通過歷史數(shù)據(jù)對(duì)神經(jīng)模糊模型訓(xùn)練與測(cè)試,并通過在線數(shù)據(jù)與歷史正常數(shù)據(jù)比對(duì)再次加強(qiáng)系統(tǒng)預(yù)警精度,解決了由于水射流裝備終端信息很難用精確的模型去描述,導(dǎo)致無法對(duì)水射流裝備進(jìn)行在線故障預(yù)警的問題;實(shí)驗(yàn)結(jié)果表明該神經(jīng)模糊算法與逐次靜態(tài)數(shù)據(jù)比較算法相結(jié)合的水射流裝備在線故障預(yù)警方法,提高了水射流裝備故障預(yù)警的準(zhǔn)確性與全面性,對(duì)環(huán)境差異具有很好的適應(yīng)性。附圖說明圖1為本發(fā)明的水射流裝備神經(jīng)模糊系統(tǒng)在線預(yù)警拓?fù)浣Y(jié)構(gòu)。圖2為本發(fā)明的學(xué)習(xí)算法流程圖。圖3為本發(fā)明的高壓泵射流壓力在線預(yù)警模型訓(xùn)練結(jié)果。圖4為本發(fā)明的訓(xùn)練樣本輸出與神經(jīng)模糊模型訓(xùn)練輸出誤差。圖5為本發(fā)明的高壓泵射流壓力在線預(yù)警模型測(cè)試結(jié)果。圖6為本發(fā)明的測(cè)試數(shù)據(jù)實(shí)際輸出與神經(jīng)模糊模型預(yù)測(cè)輸出誤差。具體實(shí)施方式下面結(jié)合附圖,對(duì)本發(fā)明的具體實(shí)施例做進(jìn)一步的說明。如圖2所示,以水射流裝備的高壓泵壓力信號(hào)為例,所述高壓泵壓力信號(hào)通過壓力變送器測(cè)得,壓力變送器輸出與壓力成正比關(guān)系的電壓信號(hào),取高壓泵正常工作時(shí)的一組數(shù)據(jù)前500個(gè)作為訓(xùn)練數(shù)據(jù)(如表一),后200個(gè)作為測(cè)試數(shù)據(jù)(如表二)基于壓力變送器輸出的電壓信號(hào)在線預(yù)警方法具體步驟如下:(1)確定高壓泵神經(jīng)模糊模型輸入與預(yù)測(cè)輸出:高壓泵數(shù)據(jù)輸入為壓力變送器輸出數(shù)據(jù)前t-4時(shí)刻的數(shù)據(jù)作為一個(gè)向量進(jìn)行輸入,即xt=[x(t),x(t-1),x(t-2),x(t-3),x(t-4)]t,以壓力變送器輸出t+1時(shí)刻為預(yù)測(cè)輸出,即yt=x(t+1)。(2)確定高壓泵壓力信號(hào)神經(jīng)模糊系統(tǒng)拓?fù)浣Y(jié)構(gòu):所述高壓泵壓力信息神經(jīng)模糊系統(tǒng)拓?fù)浣Y(jié)構(gòu)包括五層,分別為輸入層、模糊化層、模糊條件層、模糊決策層、輸出層,如圖1所示。第一層:輸入層,以電壓信號(hào)前t-4時(shí)刻的數(shù)據(jù)作為一個(gè)向量進(jìn)行輸入,該層的各節(jié)點(diǎn)與輸入向量各分量xi連接,該層節(jié)點(diǎn)將輸入信號(hào)xt=[y(t),y(t-1),y(t-2),y(t-3),y(t-4)]t傳遞給下一層,該層節(jié)點(diǎn)數(shù)n1=5。第二層:模糊化層,它的作用是計(jì)算各輸入分量屬于各語言變量值模糊集合的隸屬函數(shù)本實(shí)施例的隸屬函數(shù)采用高斯函數(shù)表示的鈴型函數(shù),表示為:式中i=1,2…,n;j=1,2…mi,n是輸入變量數(shù)且n=5,mi是xi模型分割數(shù)cij和σij分別表示隸屬度函數(shù)的中心與寬度,該層總節(jié)點(diǎn)數(shù)第三層:模糊條件層,該層每個(gè)節(jié)點(diǎn)代表一條模糊規(guī)則,第l個(gè)神經(jīng)元與第二層中第l組中的所有神經(jīng)元相連接,它的作用是用來匹配模糊規(guī)則的前件,計(jì)算出每條規(guī)則的適用度,采用的模糊算子為連乘算子,表示為:式中j=1,2,…m,第四層:模糊決策層,它所實(shí)現(xiàn)的是歸一化計(jì)算,該層有兩個(gè)神經(jīng)元組成,其中一個(gè)神經(jīng)元與第三層中的所有的神經(jīng)元通過單位權(quán)值連接,而另一個(gè)神經(jīng)元?jiǎng)t通過權(quán)值h與第三層中所有的神經(jīng)元連接,每個(gè)神經(jīng)元分別表示為:神經(jīng)元1:神經(jīng)元2:第五層:輸出層,該層由一個(gè)神經(jīng)元構(gòu)成,該神經(jīng)元與第四層的兩個(gè)神經(jīng)元通過單位權(quán)值連接,用于實(shí)現(xiàn)清晰化計(jì)算,該神經(jīng)元表示:式中,中心cij,寬度σj為前件參數(shù),hl為后件參數(shù)。(3)通過聚類求取模糊規(guī)則數(shù)及前件參數(shù):從一般意義講,聚類意味著把一個(gè)數(shù)據(jù)集合分割成不相交的子集或組,一組中的數(shù)據(jù)應(yīng)具有某些能將它們同其它組數(shù)據(jù)區(qū)分開來的性質(zhì);系統(tǒng)采用這種學(xué)習(xí)算法得到模糊規(guī)則和隸屬度函數(shù),該算法最大特點(diǎn)是能根據(jù)輸入數(shù)據(jù)的分布靈活地劃分模糊集合,減少了模糊規(guī)則數(shù);在此算法中,首先把第一個(gè)數(shù)據(jù)作為第一組的聚類中心;接下來,如果一個(gè)數(shù)據(jù)距該聚類中心的距離小于某個(gè)預(yù)測(cè)值,就把這個(gè)數(shù)據(jù)放在此組中,即該組的聚類中心應(yīng)是和這個(gè)數(shù)據(jù)最接近的;否則,把該數(shù)據(jù)設(shè)為新一組的聚類中心,具體求取規(guī)則如下:1)給定相似性參數(shù)s0,本實(shí)施例令s0=0.95,將訓(xùn)練數(shù)據(jù)對(duì)x(1)=[yt(1),yt-1(1),yt-2(1),yt-3(1),yt-4(1)]t作為第一個(gè)聚類,并設(shè)聚類中心c1=x(1),此時(shí)聚類個(gè)數(shù)n=1,屬于第一個(gè)聚類的數(shù)據(jù)對(duì)數(shù)目n1=1。2)對(duì)于第k組訓(xùn)練數(shù)據(jù)x(k),按照相似性判據(jù)計(jì)算第k組訓(xùn)練數(shù)據(jù)與每一個(gè)聚類中心cl,(1,2…,n)的相似性,并找到具有最大相似性的聚類l,即找到x(k)屬于的聚類(模糊規(guī)則)。定義相似性判據(jù)如下:3)根據(jù)下述準(zhǔn)則來決定是否要增加一個(gè)新類:如果sl<s0,表明第k組訓(xùn)練數(shù)據(jù)不屬于已有的聚類,則要建立一個(gè)新聚類,令cn+1=x(k),并令n=n+1,nn=1(nn表示屬于第n個(gè)聚類的訓(xùn)練數(shù)據(jù)對(duì)數(shù)目)如果sl≥s0,表明第k組訓(xùn)練數(shù)據(jù)屬于第l個(gè)聚類,則按下式調(diào)節(jié)第l個(gè)聚類的參數(shù)cl=cl+μ(x(k)-cl)nl=nl+1其中μ表示學(xué)習(xí)率,nl表示屬于聚類l的數(shù)據(jù)對(duì)數(shù)目。4)令k=k+1,重復(fù)執(zhí)行步驟2)至4)直到所有的訓(xùn)練數(shù)據(jù)對(duì)都被分配到相應(yīng)的聚類中為止。從而得到聚類個(gè)數(shù)(模糊規(guī)則)為n,隸屬度函數(shù)的寬度計(jì)算如下:其中ρ是交迭參數(shù),通常取1≤ρ≤2。(4)通過最小二乘算法求取后件參數(shù):后件參數(shù)的參數(shù)辨識(shí),求解h(h1,h2,…h(huán)n)的傳統(tǒng)方法有最小二乘法,具體求取規(guī)則如下:令則h的最小二乘估計(jì)為:高壓泵射流壓力在線預(yù)警模型訓(xùn)練結(jié)果如圖3所示,其中x軸為訓(xùn)練樣本數(shù),y軸為壓力變送器輸出電壓值,實(shí)線為訓(xùn)練樣本輸出,虛線為神經(jīng)模糊模型訓(xùn)練輸出;訓(xùn)練樣本輸出與神經(jīng)模糊模型訓(xùn)練輸出的誤差如圖4所示,其中x軸為訓(xùn)練樣本數(shù),y軸為訓(xùn)練誤差。(5)高壓泵射流壓力信號(hào)預(yù)測(cè):將壓力變送器輸出電壓測(cè)試數(shù)據(jù)如表二按向量形式[x(t)′,x(t-1)′,x(t-2)′,x(t-3)′,x(t-4)′]依次輸入神經(jīng)模糊系統(tǒng)中,得出神經(jīng)模糊模型的預(yù)測(cè)輸出值x(t+1)′,計(jì)算測(cè)試數(shù)據(jù)實(shí)際輸出與預(yù)測(cè)輸出的絕對(duì)誤差δe=|x(t+1)-x(t+1)′|。取高壓泵正常工作時(shí)的前l(fā)個(gè)數(shù)據(jù)的平均值計(jì)算測(cè)試數(shù)據(jù)與靜態(tài)正常訓(xùn)練數(shù)據(jù)的絕對(duì)誤差只有保證測(cè)試數(shù)據(jù)δe和δe′都在允許誤差范圍內(nèi),則證明預(yù)測(cè)數(shù)據(jù)有效。根據(jù)系統(tǒng)的預(yù)測(cè)輸出值驗(yàn)證系統(tǒng)的可靠性;測(cè)試結(jié)果如圖5所示,其中x軸為測(cè)試樣本數(shù),y軸為壓力變送器輸出電壓值,實(shí)線為實(shí)際輸出,虛線為神經(jīng)模糊模型預(yù)測(cè)輸出,測(cè)試數(shù)據(jù)實(shí)際輸出與神經(jīng)模糊模型預(yù)測(cè)輸出的誤差如圖6所示,其中x軸為測(cè)試樣本數(shù),y軸為測(cè)試誤差,預(yù)測(cè)輸出與實(shí)際輸出基本吻合,實(shí)驗(yàn)表明基于神經(jīng)模糊技術(shù)的水射流裝備在線預(yù)警方法可靠。表一:訓(xùn)練原始數(shù)據(jù)。1.2891.2931.2791.2981.2981.2791.2891.3181.3281.3081.2981.2791.2841.2841.3031.2641.3131.3331.3231.3031.2891.2931.2791.2981.2891.2691.3081.3331.3081.2891.2891.2741.2791.2931.2741.3031.3371.3181.3081.2841.2931.2891.2931.2891.251.3131.3331.3081.2931.2931.2791.2931.2891.2891.2931.3371.3281.3031.2981.2791.2791.2841.3031.2741.3031.3181.3281.3081.2931.2891.2791.2931.2981.2641.3131.3281.3031.2931.2791.2891.2841.2891.2741.2791.3131.3181.3081.2981.2791.2841.2931.2891.2641.3081.3181.3081.2981.2841.2891.2931.2891.2841.2691.3131.3281.3181.2841.2841.2791.2791.2891.2691.2981.3181.3181.3031.2891.2891.2841.2891.2841.2591.3081.3231.3281.3031.2841.2891.2791.2981.2791.2891.3281.3281.2981.2891.2791.2891.2981.3031.2691.2931.3331.3181.3081.2841.2891.2891.2981.3031.2641.3231.3331.3231.2931.2891.2891.2841.2981.2891.2841.3181.3231.3031.2981.2791.2891.2841.3031.2591.3131.3331.3231.2981.2931.2891.2841.3031.2891.2741.3131.3331.3031.2981.2791.2741.2791.2891.2791.2891.3331.3231.2981.2841.2791.2791.2981.2981.2641.3081.3371.3231.2981.2931.2741.2891.2841.2981.2791.3281.3181.3181.2891.2891.2931.2841.2981.2691.3031.3181.3281.2931.2931.2791.2841.2841.2931.2591.3181.3181.3081.3031.2931.2891.2841.2981.2791.2791.3181.3371.3031.2931.2791.2741.2931.2931.2641.3081.3331.3131.3081.2841.2891.2791.2931.2981.2591.3181.3371.3081.2981.2931.2741.2891.2891.2841.2841.3281.3181.3031.2981.2791.2791.2891.2981.2691.3131.3281.3281.2981.2931.2791.2841.2981.2891.2741.3231.3181.3081.3031.2791.2841.2891.3031.2741.2841.3231.3181.3181.2931.2791.2741.2981.2891.2591.3031.3231.3181.2931.2931.2891.2891.2981.2981.2691.3131.3331.3181.2931.2791.2741.2841.2891.2741.3031.3281.3181.3131.2931.2841.2931.2981.2981.2541.3131.3181.3181.2931.2931.2841.2891.2931.2891.2841.3131.3231.3131.2981.2791.2891.2891.2981.2841.2891.3231.3131.3131.2841.2891.2741.2981.2931.2691.3031.3231.3281.3031.2841.2791.2931.2891.2931.2791.3281.3181.3131.2931.2891.2741.2841.2931.2841.3031.3231.3331.2981.2931.2791.2841.2891.3031.2691.3181.3371.3181.3031.2931.2841.2841.2981.2841.2791.3131.3181.3181.2931.2791.2791.2931.2891.2641.2931.3281.3181.3131.2931.2791.2741.2931.2981.2541.3031.3231.3231.3031.2791.2791.2931.2981.2841.2841.3231.3231.3181.2981.2791.2891.2931.2981.2691.3081.3331.3181.3131.2931.2891.2741.2891.2891.2591.3081.3231.3231.2981.2741.2691.2841.2891.2981.2791.3281.3231.3181.2981.2891.2791.2981.2981.2741.2931.3371.3231.3031.2931.2841.2841.2891.3031.2591.3181.3231.3081.2981.2841.2791.2931.2981.2891.2931.3131.3331.3031.2981.2841.2741.2931.2891.2741.2981.323表二:測(cè)試原始數(shù)據(jù)。1.3181.3031.2981.2931.2931.2931.3031.2541.3131.3231.3231.2981.2891.2741.2931.2981.2841.2891.3331.3331.3081.2981.2741.2841.2891.2891.2591.3031.3231.3281.3031.2841.2791.2741.2981.2931.2691.3081.3331.3081.3031.2931.2791.2891.2981.2891.2841.3331.3131.3031.2891.2891.2891.2891.2931.2741.3131.3281.3181.3131.2981.2791.2931.2981.2931.2741.3031.3371.3081.2981.2891.2741.2841.2981.2741.2841.3231.3231.2981.2891.2841.2791.2981.2931.2691.2981.3231.3131.3081.2931.2741.2891.2841.3031.2741.3231.3331.3231.2981.2841.2791.2841.2981.2841.2931.3181.3281.3081.2981.2841.2841.2841.2891.2541.3081.3371.3331.3031.2791.2931.2791.2981.2891.2641.3231.3231.3031.2891.2891.2741.2931.2891.2841.2931.3181.3281.3131.2841.2931.2931.2891.3031.2541.3131.3231.3331.3031.2791.2741.2741.2931.2931.2791.3131.3231.3131.3031.2791.2791.2891.2891.2841.3031.3231.3281.3181.2841.2841.2741.2981.2931.2641.3181.3281.3181.3081.2791.2841.2931.2891.2891.2791.3281.3181.3181.2931.2891.2741.2841.2891.2931.2841.3331.3181.2981.2981.2791.2891.2981.2931.2641.3031.3331.3081.3031.2791.2891.2891.2931.2841.2931.3181.3231.3231.2891.2891.2791.2791.2981.2741.2931.3181.3331.3081.2931.2741.2891.2891.2981.2541.3081.3231.3081.3081.2791.2931.2841.3031.2841.2841.3231.3181.3081.2841.2891.2791.2891.2981.2791.2981.3281.3131.2981.2891.2791.2931.2981.2981.2641.3031.3131.3181.2891.2891.2841.2891.2891.2841.2791.3231.3371.3031.2981.2931.2791.2931.3031.2841.2891.3131.3231.3081.2791.2741.2791.2931.2891.2591.3081.3181.3081.2981.2791.2741.2981.2931.2931.2741.3281.323當(dāng)前第1頁12
當(dāng)前第1頁1 2 
網(wǎng)友詢問留言 已有0條留言
  • 還沒有人留言評(píng)論。精彩留言會(huì)獲得點(diǎn)贊!
1